Stefano Falletta
(Politecnico di Torino)

Frustrated Iridates as Candidate Quantum Spin Liquids

It has long been recognized that strong quantum fluctuations may inhibit long range magnetic ordering and give rise to a paramagnetic ground state. A special class of quantum paramagnets, known as quantum spin liquids (QSL), have been attracting tremendous theoretical and experimental attention.

While materials like Li$_2$IrO$_3$ and Na$_2$IrO$_3$ were experimentally found to order magnetically at low temperatures, the recently synthesized H$_3$LiIr$_2$O$_6$ does not show any magnetic ordering down to 1K and therefore represents a promising candidate for a topological QSL.

To clarify the reasons why a QSL behavior can be stabilized in H$_3$LiIr$_2$O$_6$, a detailed structural, magnetic and electronic understanding of the aforementioned iridates is necessary.